Main Page   Class Hierarchy   Compound List   File List   Compound Members   File Members  

/magnus/back_end/Subgroup/include/PresentationsOfSubgroup.h

Go to the documentation of this file.
00001 /*
00002  *   $Id: PresentationsOfSubgroup.h,v 1.1 2000/02/28 21:36:42 bormotov Exp $
00003  */
00004 
00005 // Copyright (C) 2000 The New York Group Theory Cooperative
00006 // See magnus/doc/COPYRIGHT for the full notice.
00007 
00008 // Contents: Declaration of the PresentationsOfSubgroup 
00009 //           classes.
00010 //
00011 // Principal Authors: Denis Serbin
00012 //
00013 // Status: Useable
00014 //
00015 // Revision History:
00016 //
00017 // Special Notes:
00018 //
00019 //
00020 
00021 #ifndef _PRESENTATIONS_OF_SUBGROUP_H_
00022 #define _PRESENTATIONS_OF_SUBGROUP_H_
00023 
00024 #include "Subgroup.h"
00025 #include "FPGroup.h"
00026 #include "File.h"
00027 #include "CosetEnumerator.h"
00028 
00029 class PresentationsOfSubgroup 
00030 {
00031  public:
00032   
00033   PresentationsOfSubgroup( const Subgroup& );
00034 
00035   FPGroup makePresentation( File &tmpOutput );
00036   // Computes a presentation for this subgroup if it's possible using
00037   // the method of progressive approximations.As a result returns 
00038   // finitely presented group.
00039   
00040   FPGroup makePresentationTC( const PermutationRepresentation &pr,
00041                               File &tmpOutput );
00042   // Computes a presentation for this subgroup if it's possible using
00043   // Todd-Coxeter procedure.As a result returns finitely presented group.
00044 
00045   FPGroup makePurePresentationTC( const PermutationRepresentation &pr );
00046  
00047   Word rewriteWord( const PermutationRepresentation& pr , const Word& w );
00048   // Rewrites a word in terms of Schreier generators
00049 
00050  private:
00051   
00052   Subgroup H;
00053   FPGroup G;
00054   VectorOf<Word> theGenerators;
00055 };
00056 
00057 #endif
00058 
00059 
00060 

Generated at Tue Jun 19 09:49:43 2001 for Magnus Classes by doxygen1.2.6 written by Dimitri van Heesch, © 1997-2001