Main Page   Class Hierarchy   Compound List   File List   Compound Members   File Members  

FreeGroup Class Reference

#include <FreeGroup.h>

Inheritance diagram for FreeGroup::

DerivedObjectOf ObjectOf List of all members.

Public Types

typedef FreeGroupRep::NielsenBasis NielsenBasis

Public Methods

 FreeGroup (int rank=0)
 FreeGroup (const VectorOf< Chars > &gennames)
int rank () const
Aut randomAut () const
Trichotomy conjugacyProblem (const Word &u, const Word &v,Word &c) const
Bool inCommutatorSG (const Word &w) const
Bool isCommutator (const Word &w, Word &u1, Word &u2) const
Chars productOfCommutators (const Word &w, File &file)
Chars productOfSquares (const Word &w, File &file)
Word getN_thElement (int n) const
int numberOfElement (const Word &w) const
VectorOf<WordnielsenBasis (const VectorOf< Word > &V) const
NielsenBasis nielsenBasis (const VectorOf< Word > &V, bool writeToFile) const
Bool isAutomorphism (const VectorOf< Word > &V) const
Bool isInnerAutomorphism (const VectorOf< Word > &V) const
bool isIAAutomorphism (const VectorOf< Word > &V) const
VectorOf<WordinverseAutomorphism (const VectorOf< Word > &V) const
Map inverseAutomorphism (const Map &M) const

Static Public Methods

Type type ()

Protected Methods

 FreeGroup (FreeGroupRep *newrep)

Member Typedef Documentation

typedef FreeGroupRep::NielsenBasis FreeGroup::NielsenBasis
 

Definition at line 184 of file FreeGroup.h.

Referenced by nielsenBasis().


Constructor & Destructor Documentation

FreeGroup::FreeGroup ( int rank = 0 ) [inline]
 

Definition at line 69 of file FreeGroup.h.

FreeGroup::FreeGroup ( const VectorOf< Chars > & gennames ) [inline]
 

Definition at line 74 of file FreeGroup.h.

FreeGroup::FreeGroup ( FreeGroupRep * newrep ) [inline, protected]
 

Definition at line 280 of file FreeGroup.h.


Member Function Documentation

Type FreeGroup::type ( ) [inline, static]
 

Definition at line 94 of file FreeGroup.h.

Referenced by Automorphism::inverse().

int FreeGroup::rank ( ) const [inline]
 

Definition at line 109 of file FreeGroup.h.

Aut FreeGroup::randomAut ( ) const
 

Trichotomy FreeGroup::conjugacyProblem ( const Word & u,
const Word & v,
Word & c ) const [inline]
 

Definition at line 138 of file FreeGroup.h.

Bool FreeGroup::inCommutatorSG ( const Word & w ) const [inline]
 

Definition at line 142 of file FreeGroup.h.

Bool FreeGroup::isCommutator ( const Word & w,
Word & u1,
Word & u2 ) const [inline]
 

Definition at line 147 of file FreeGroup.h.

Chars FreeGroup::productOfCommutators ( const Word & w,
File & file ) [inline]
 

Definition at line 153 of file FreeGroup.h.

Chars FreeGroup::productOfSquares ( const Word & w,
File & file ) [inline]
 

Definition at line 160 of file FreeGroup.h.

Word FreeGroup::getN_thElement ( int n ) const [inline]
 

Definition at line 167 of file FreeGroup.h.

int FreeGroup::numberOfElement ( const Word & w ) const [inline]
 

Definition at line 173 of file FreeGroup.h.

VectorOf< Word > FreeGroup::nielsenBasis<Word> ( const VectorOf< Word > & V ) const [inline]
 

Definition at line 179 of file FreeGroup.h.

NielsenBasis FreeGroup::nielsenBasis ( const VectorOf< Word > & V,
bool writeToFile ) const [inline]
 

Definition at line 186 of file FreeGroup.h.

Bool FreeGroup::isAutomorphism ( const VectorOf< Word > & V ) const [inline]
 

Definition at line 192 of file FreeGroup.h.

Bool FreeGroup::isInnerAutomorphism ( const VectorOf< Word > & V ) const [inline]
 

Definition at line 199 of file FreeGroup.h.

bool FreeGroup::isIAAutomorphism ( const VectorOf< Word > & V ) const [inline]
 

Definition at line 207 of file FreeGroup.h.

VectorOf< Word > FreeGroup::inverseAutomorphism<Word> ( const VectorOf< Word > & V ) const [inline]
 

Definition at line 215 of file FreeGroup.h.

Referenced by inverseAutomorphism().

Map FreeGroup::inverseAutomorphism ( const Map & M ) const [inline]
 

Definition at line 221 of file FreeGroup.h.


The documentation for this class was generated from the following file:
Generated at Tue Jun 19 09:49:53 2001 for Magnus Classes by doxygen1.2.6 written by Dimitri van Heesch, © 1997-2001