

Function Extraction Technology:

Computing the Behavior of Malware

Rick Linger, Kirk Sayre, Tim Daly, Mark Pleszkoch

CERT, Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA

rlinger, sayre, daly, mpleszko@cert.org

Abstract

Current methods of malware analysis are increasingly

challenged by the scope and sophistication of attacks.

Recent advances in software behavior computation

illuminate an opportunity to compute the behavior of

malware at machine speeds, to aid in understanding

intruder methods and developing countermeasures.

The behavior computation process helps eliminate

certain forms of malware obfuscation and computes

the net effects of the remaining functional code. This

paper describes behavior computation technology and

provides an example of its use in malware analysis.

1. A malware vulnerability

Malware often exhibits a fundamental vulnerability

that can be exploited by defenders. No matter how a

malware package is obfuscated, and no matter what

attack strategy it implements, it must ultimately ex-

ecute on a target machine to achieve its objectives.

That is, the intended behavior of a malware package

must be realized through ordinary execution of instruc-

tions and manipulation of memory, just as must the

intended behavior of legitimate software. A potential

Achilles heel of malware is literally its functional be-

havior which must achieve a purpose intended by the

attacker. This paper describes application of software

behavior computation to help eliminate certain forms

of obfuscation in malware and derive the net behavior

of the remaining functional code.

This malware vulnerability is being exploited

through research and development carried out by the

CERT organization of the Software Engineering Insti-

tute at Carnegie Mellon University. The result is an

emerging technology named Function Extraction (FX).

The objective of behavior computation is to produce

the net functional effect of the sequential logic of a

program in all circumstances of use with mathematical

precision to the maximum extent possible. This

process is subject to theoretical limitations, for exam-

ple in loop behavior computation. Research has shown

how to reduce the effects of these limitations for prac-

tical application. Function Extraction has been success-

fully employed in malware analysis [12,13].

A specialization of FX technology is being devel-

oped in the FX/MC (Function Extraction for Malicious

Code) system. Intruders often obfuscate malware

packages with complex control flow (spaghetti logic)

and blocks of no-op code (code with no functional

effect), in an effort to make analysis difficult or im-

possible. The FX/MC system eliminates obfuscation

caused by spaghetti logic and no-op blocks, and com-

putes the net behavior of the remaining functional

code.

2. Foundations of behavior computation

Software behavior computation is enabled by the

Structure Theorem and the Correctness Theorem.

The Structure Theorem guarantees the sufficiency

of single-entry-single-exit sequence, alternation, and

iteration control structures to represent any sequential

program. The constructive proof of the Theorem de-

fines an algorithm for transforming arbitrary control

flow containing jumps into function-equivalent form

expressed as an algebraic structure of nested and se-

quenced control structures. This structure is a neces-

sary precondition for behavior computation. Applica-

tion of the Structure Theorem eliminates arbitrary

branching logic as is found in control flow obfuscation

of malware packages. The proof of the theorem is giv-

en in [8].

The Correctness Theorem defines the transforma-

tion of procedural control structures, including se-

quence, ifthenelse, and whiledo, into procedure-free

functional forms. The functional forms represent the

behavior signatures of the control structures. They can

be obtained through function composition and case

analysis as described below (for control structure la-

beled P, operations on data labeled g and h, predicate

labeled p, and program function labeled f). These func-

tion equations are independent of language syntax and

program subject matter, and define the mathematical

starting point for behavior calculation.

The behavior signature of a sequence control struc-

ture

P: g; h

can be given by

f = [P] = [g; h] = [h] o [g]

where the square brackets denote the behavior signa-

ture of the enclosed program and “o” denotes the com-

position operator. That is, the program function of a

sequence can be calculated by ordinary function com-

position of its constituent parts.

The behavior signature of an alternation control

structure

P: if p then g else h endif

can be given by

f = [P] = [if p then g else h endif]

 = ([p] = true  [g] | [p] = false  [h])

where | is the “or” symbol. That is, the program func-

tion of an alternation is given by a case analysis of the

true and false branches.

The behavior signature of an iteration control struc-

ture

P: while p do g enddo

can be expressed using function composition and case

analysis in a recursive equation based on the equiva-

lence of an iteration control structure and an iteration-

free control structure (an ifthen structure):

f = [P] = [while p do g enddo]

 = [if p then g; while p do g enddo endif]

 = [if p then g; f endif]

This recursive functional form must undergo additional

transformations to arrive at a representation of loop

behavior that is readily understandable. The roots of

the Correctness Theorem are found in the mathematics

of denotational semantics [1,8,9,11,14]. Proofs of the

Correctness Theorem and a related Iteration-Recursion

Lemma are given in [8].

The functional behavior defined by the Correctness

Theorem is identical to that of the control structure

from which it is computed, that is, the computed beha-

vior and corresponding control structure are function-

equivalent mappings of inputs into outputs. Thus,

computed behaviors can be freely substituted for cor-

responding control structures. Such substitution de-

fines a stepwise process of behavior computation, whe-

reby the algebraic control structure hierarchies pro-

duced by the Structure Theorem are traversed from

bottom to top. At each step, net effects of control struc-

tures are composed and propagated while procedural

details are left behind. Behavior computation involves

mathematics beyond the Structure and Correctness

Theorems, but it would be impossible without them.

3. The FX/MC system

Substantial research in mathematical foundations

and algorithm design for behavior computation has

been required to develop the technology to its present

state. To see how the FX/MC system works, consider

the architecture diagram of Figure 1. FX/MC operates

on malware coded in or compiled into Intel assembly

language. The algorithmic process of behavior compu-

tation requires four principal steps as follows.

Step 1: Transform instructions to functional seman-

tics. Behavior computation operates at the level of

functional semantics of programs, not syntactic repre-

sentations. Each instruction in an input program is

transformed into a functional form that defines the net

effect of the instruction on the state of the system. For

example, an add instruction operating on registers not

only produces a sum, but also changes the values of

certain flag registers on the processor. The instruction

transformation is driven by a pre-defined repository of

instruction semantics as shown in the figure. There are

over 1100 op codes on the processor. Build-out of this

repository is an ongoing task.

Step 2: Transform program to structured form. The

true control flow of the input program, including any

computed jumps and branching logic, is determined by

deterministic reachability analysis in a frontier propa-

gation algorithm. The program is then transformed into

structured form, guided by the constructive proof of

the Structure Theorem. This step expresses the pro-

gram in an algebraic structure of single-entry, single-

exit control structures including sequence, ifthenelse,

and whiledo. Control flow obfuscation caused by arbi-

trary jumps in the code, often inserted by intruders

using commonly available tools, is eliminated by the

structuring process.

Step 3: Compute program behavior. Behavior

computation can now be carried out, guided by the

Correctness Theorem that defines transformations from

procedural structures to non-procedural behavior ex-

pressions. A significant amount of mathematical

processing is required for this step. Research has

shown how to accommodate theoretical limitations on

loop behavior computation.

Step 4: Reduce behavior to final form. The compu-

tations of step 3 account for all behavior, even taking

machine precision into account. This initial behavior

must now be reduced to final form. In analogy, recall

high school algebra and the need to reduce expressions

such as 3x
3
 + 2x

2
 –x

3
 + 4x

2
 to 2x

3
 + 6x

2
. This process

is driven by a repository of Semantic Reduction Theo-

rems (SRTs) as shown in the figure. These micro-

theorems encapsulate information required to reduce

terms in computed behavior to simpler form. The theo-

rems are very general and widely applicable. For ex-

ample, the library of SRTs for finite arithmetic pro-

vides reductions for arithmetic expressions will not

require modification unless the processor architecture

is modified. Build-out of this repository is an on-going

task. In addition, computed behavior can exhibit struc-

tural relationships useful for organization and presenta-

tion. For example, behavior expressions often contain

repeated substructures that can be factored and ab-

stracted.

Figure 1: FX/MC system architecture

4. Properties of behavior computation

Consider the miniature illustration of behavior cal-

culation in Figure 2. The three-line program in the

upper left is expressed in design language form, and

operates on small integers x and y (“:=” is the assign-

ment operator). It is not immediately obvious what the

program is doing, but its effect can be calculated with

the trace table shown in the Figure. The table contains

a row for each assignment and a column for each vari-

able assigned. Each row shows the effect of its as-

signment on variables x and y (in the first row, “0”

signifies “old value,” 1 signifies “new value, and simi-

lar for the other rows). The derivations apply alge-

braic substitutions and reductions in a function compo-

sition process to arrive at output values for the pro-

gram expressed in terms of input values, with interme-

diate operations abstracted out. This computation re-

veals that the program is a swap that exchanges the

initial values of x and y.

The behavior is expressed in terms of a conditional

concurrent assignment (CCA). The condition is true

(the sequence is always executed since it contains no

branching logic), and the assignments to final x and y

are carried out concurrently, that is, all expressions on

the right of the assignment operators are assigned to all

targets on the left at the same time. This CCA structure

is the only statement form required in the FX/MC be-

havior expression language. It is an important structure

for understanding the examples that follow.

Suppose the program of Figure 2 contained an er-

ror, say, for example, that the addition in the first as-

signment had been mistakenly coded as a subtract op-

eration. The trace table and derivations would reveal

the computed behavior as the following concurrent

assignment, and the error is apparent:

true 

 x := y

 y := x – 2y

This miniature example can be used to point out

two important properties. The first is the “computing,

not searching” property. Behavior computation does

not search for things in code at the syntactic level, as is

the case with many methods of analysis. Rather, it ap-

plies the semantics of instructions and the mathematics

of function composition to compute net effects of pro-

grams. Thus, both the correct and error results of the

computation above are produced by the same algo-

rithm, with no special cases of analysis required. The

computation simply “follows it nose” to produce what-

ever behavior is present, whether intended, unintended,

or malicious.

The second is the “many implementations, one be-

havior” property. There are many possible ways to

implement a given specification. For example, the

swap could be implemented with a temporary varia-

ble, t,

t := x

x := y

y := t

or with “exclusive or” instructions:

x := x xor y

y := x xor y

 x := x xor y

Each of these implementations would result in the

same computed behavior on x and y, namely, a swap of

their initial values. When behavior is computed, specif-

ics of procedural implementations are replaced by net

behavior that can represent a variety of algorithmic

strategies. This property will prove useful in identify-

ing and analyzing malware families.

Of course, orders of magnitude more mathematical

processing are carried out by the FX/MC system in

computing behavior for real programs. This simple

example nevertheless depicts generation of behavior

knowledge through function composition and illu-

strates key properties of the process. The next section

provides a more substantial example.

Figure 2: A miniature example of behavior computation

5. An example of malware obfuscation

removal and behavior computation

Figure 3 depicts the first two screenshots from IDA

Pro of a nine-part display of a malware program con-

taining about 340 lines of Intel assembly language.

Only the first two screenshots are shown to save space.

The others exhibit similar complexity. The malware

has been intentionally obfuscated by a tool that added

complex, spaghetti-logic control flow as shown by the

many red arrows on the left (the IDA Pro displays do

not show all of this obfuscation). In addition, no-op

blocks of code that have no functional effect have been

inserted, all of which makes analysis very difficult.

However, as observed earlier, any obfuscation by an

intruder must not perturb the intended functional effect

of the malware, or risk defeating its purpose. The

FX/MC system is designed to eliminate such obfusca-

tion and compute the behavior of the remaining func-

tional code of the malware.

Figure 3. First two screenshots of an

obfuscated malware program

Figure 4 depicts the input malware program of Fig-

ure 3 after transformation to structured form and elimi-

nation of control flow obfuscation. To save space, only

the first two parts of a four-part display are shown. The

others simply continue the sequential logic. The con-

structive proof of the Structure Theorem and other

mathematics was employed to create a function-

equivalent version of the program expressed in an al-

gebraic structure of nested control structures.

Figure 3 continued.

In this case, the structuring transformation reveals

that, despite the addition of so much control flow ob-

fuscation by the intruder, the program is in reality a

simple sequence structure with no branching or loop-

ing logic present. Jump statements are left in the pro-

gram for traceability, but have no effect on control

flow and can be regarded as comments. The program is

smaller with control flow obfuscation removed. The

elimination of arbitrary control flow jumps seen here is

an intrinsic property of the structuring mathematics

that works no matter what particular configuration of

spaghetti logic may be present. No special cases or

heuristics are employed in this process.

Figure 4. Start of the program after structuring

and eliminating control flow obfuscation

The simple control flow of this structured version

of the malware, produced in seconds at machine

speeds, can now be read and understood by analysts, a

virtually impossible task for the initial spaghetti-logic

version of Figure 3. The structuring process helps re-

duce the effectiveness of this type of control flow ob-

fuscation as a weapon for intruders.

While the logic of the malware program is now

understandable, it still contains embedded no-op

blocks of code (code with no functional effect) that can

complicate the analysis process and must be eliminat-

ed. The next step is to compute the behavior of the

structured program of Figure 4.

Figure 4 continued.

Behavior computation, which ultimately produces the

net functional effect of the program, traverses the

control structures in a stepwise process of function

composition. If an intermediate composition produces

a state seen previously, the intervening code is a no-

op block and can be eliminated. This process results

in the display of Figure 5.

mov AH, 78
lea DX, [1044]
int 33
mov AH, 60
mov DX, 0x009E
int 33
mov BH, 22
add BH, 42
xchg bx, ax
lea DX, [8]
mov CX, 0x0410
int 33
(ret)
label = exit

Figure 5. Malware program with

embedded no-op blocks eliminated

With no-op blocks removed, the 340-line malware

program reduces to just 14 lines of code, a better than

20:1 reduction. It turns out that nearly all of the code

of Figure 4 had no functional effect at all, and was

present solely to make analysis more difficult. Com-

pare these 14 lines of functional code to Figure 3

which depicts the original obfuscated version of the

program. The reduction in size and complexity of

malware illustrated here can be easily expressed in

metrics that provide objective measures of system

performance.

In determining the purely functional instructions

in the malware program, the FX/MC system computes

their net behavior. The results of the computation are

depicted in Figure 6. It turns out that this small mal-

ware program exhibits four possible cases of beha-

vior, three of which result from programming errors

that produce nothing more than incidental effects.

The first of these is shown in the Figure, the others

are similar. The fourth case in the figure, however,

reveals the full malicious capabilities of the malware.

The cases of behavior in Figure 6 each represent a

conditional concurrent assignment (CCA). If the con-

dition on a case is true, that case defines the behavior

that the program will produce. The cases are disjoint,

so only one case of behavior will occur on a given

execution of the program.

As shown, the concurrent assignments can involve

updates to registers, memory, the file system, and

flags. All of the assignments in these categories occur

at once, essentially a vector assignment from right-

hand to left-hand sides of the “:=” assignment opera-

tor. The cases represent an as-built specification of

the malware program.

Consider the behavior defined by Case 1. The

condition contains two predicates highlighted in ital-

ics, namely, create_file_failed and write_file_failed,

both of which take arguments involving file names

and attributes. It is clear that the malware is attempt-

ing to create a file and write it. However, because a

case of behavior only occurs if its condition is true,

this case will only occur if both the create and the

write have failed. As a result, the behavior produced

by this failure case involves only incidental effects

that are not shown in the Figure. Case 1 represents a

programming error, a mistake in the malware that

produces no malicious effect at all.

Cases 2 and 3, not shown, exhibit similar out-

comes. In these cases either the create or the write

fails, and the result is similar: incidental behavior is

produced for registers, memory, and flags, an empty

file is created in case 2, and bytes are written to an

unintended file in Case 3. In either case, the malware

again fails to achieve the desired effect. These are

error cases as well, revealing more coding mistakes.

In Case 4 both the create_file_succeeded and

write_file_succeeded predicates are true. The File

System is updated with a file starting at byte 0 and of

size 39 bytes (shown in italics). This represents the

location of the malware itself, which is exactly 39

bytes long. The computed behavior reveals that mal-

ware carries out a self-replication by writing itself

into the File System of the host machine.

6. Future research

A need exists to provide better tools for malware

analysis. The functional semantics of malware is a

resource available for this task. Automated behavior

computation taps this resource in a new approach to

the problem. FX can provide analysts with knowledge

of malware structure and behavior that is not current-

ly available and can be used in a variety of ways:

 Understand the function of malware.

 Gain insight into how malware spreads.

 Reveal vulnerabilities and attack strategies.

 Evaluate intruder skill levels.

 Compare malware based on computed behavior.

 Develop defenses and countermeasures.

Beyond malware analysis, FX technology can be

applied to other areas, including software develop-

ment and verification [3,7], embedded system valida-

tion [2], software testing [5,6], analysis of security

attributes [15,16], and malware detection [10]. Con-

trolled experiments have shown significant improve-

ments in programmer productivity and program quali-

ty for small programs when computed behavior is

available [4]. As the build-out of FX technology con-

tinues and experience with behavior computation

accumulates, additional research opportunities and

application areas will emerge.

CASE 1 (first of three cases resulting from programming errors, the other two are not shown)

 Condition:

create_file_failed(
file_name_addr = 158,
file_attribute = (word at (40 + (dword at (4 + ESP)))))

and
write_file_failed(
 file_handle = create_file_error_code(
 file_name_addr = 158,
 file_attribute = (word at (40 + (dword at (4 + ESP))))),
buffer_to_write = 0,
num_bytes_to_write = 39)

 Registers, Memory, File System, Flags: (Incidental behavior not shown)

CASE 4 (successful self-replication case)

Condition:

create_file_succeeded(
file_name_addr = 158,

file_attribute = (word at (40 + (dword at (4 + ESP)))))
and
write_file_succeeded(
 file_handle = get_new_file_handle(
 file_name_addr = 158,
 file_attribute = (word at (40 + (dword at (4 + ESP))))),
buffer_to_write = 0,
num_bytes_to_write=39)

Registers, Memory, Flags:

(Incidental behavior not shown)

File System:

FILES :=

create_file_and_truncate(

file_name_addr = 158,
file_attribute = (word at (40 + (dword at (4 + ESP)))))

and
write_file(

file_handle = get_new_file_handle(
file_name_addr= 158,
file_attribute = (word at (40 + (dword at (4 + ESP))))),

buffer_to_write = 0,
num_bytes_to_write = 39)

Figure 6. Computed malware behavior

A key objective for future research is comparison of

behavior computation with other methods for malware

analysis in controlled experiments. Research is currently

underway to evaluate computed behavior as a means to

augment or replace certain forms of software testing for

embedded systems. Another area of future research is

application of computed behavior to functional under-

standing and documentation of legacy software.

7. References

[1] Allison, L., A Practical Introduction to Denotational Se-

mantics, Cambridge Computer Science Texts 23, Cam-

bridge University Press, 1986.

[2] Bartholomew, R., L. Burns, T. Daly, R. Linger, and S.

Prowell, “Function Extraction: Automated Behavior

Computation for Aerospace Software Verification and

Certification,” Proceedings of 2007 AIAA Aerospace

Conference, Monterey, CA, May, 2007, Vol. 3, pp.2145-

2153.

[3] Burns, L. and T. Daly, “FXplorer: Exploration of Com-

puted Software Behavior: A New Approach to Under-

standing and Verification,” Proceedings of Hawaii Inter-

national Conference on System Sciences (HICSS-42),

IEEE Computer Society Press, Los Alimitos, CA, 2009.

[4] Collins, R., G. Walton, A. Hevner, and R. Linger, The

CERT Function Extraction Experiment: Quantifying FX

Impact on Software Comprehension and Verification,

CMU/SEI-2005-TN-047, Software Engineering Institute,

Carnegie Mellon University, 2005.

[5] Linger, R. and T. Daly, “Advanced Technology for Test

and Evaluation of Embedded Systems,” CERT 2009 Re-

search Report (R. Linger, Ed.), Software Engineering In-

stitute, Carnegie Mellon University, Pittsburgh, PA, 2010.

[6] Linger, R., . Pleszkoch, and R. Hevner, “Introducing

Function Extraction into Software Testing,” The Data

Base for Advances in Information Systems: Special Issue

on Software Systems Testing, ACM SIGMIS, New York,

NY, 2008.

[7] Linger, R., M. Pleszkoch, L. Burns, A. Hevner, and G.

Walton, “Next-Generation Software Engineering: Func-

tion Extraction for Computation of Software Behavior,”

Proceedings of Hawaii International Conference on Sys-

tem Sciences (HICSS-40), Hawaii, IEEE Computer So-

ciety Press, Los Alamitos, CA, 2007.

[8] Linger, R., H. Mills, and B. Witt, Structured Program-

ming: Theory and Practice, Addison-Wesley, Reading,

MS, 1979.

[9] Mills, H. and R. Linger, “Cleanroom Software Engineer-

ing.” Encyclopedia of Software Engineering, 2nd ed. (J.

Marciniak, ed.). John Wiley & Sons, New York, NY,

2002.

[10] Pleszkoch, M. and R. Linger, “Improving Network Sys-

tem Security with Function Extraction Technology for

Automated Calculation of Program Behavior.” Proceed-

ings of Hawaii International Conference on System

Sciences (HICSS-37). Hawaii, IEEE Computer Society

Press, Los Alimitos, CA, 2004.

[11] Prowell, S., C. Trammell, R. Linger, and J. Poore, Clea-

nroom Software Engineering: Technology and Practice,

Addison Wesley, Reading, MA, 1999.

[12] Prowell, S., M. Pleszkoch, and C. Cohen, “Applying

Function Extraction (FX) Techniques to Reverse Engi-

neer Virtual Machines,” CERT 2009 Research Report (R.

Linger, Ed.), Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, 2010.

[13] Sayre, K., M. Pleszkoch, T. Daly, R. Linger, and S. Pro-

well, “Function Extraction for Malicious Code Analysis,”

CERT 2009 Research Report (R. Linger, Ed.), Software

Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, 2010.

[14] Smullyan, R. Recursion Theory for Metamathematics,

Oxford Logic Guides 22, Oxford University Press, 1993.

[15] Walton, G. and R. Linger, “Security Requirements as

Functional Behaviors for System Analysis,” Proceedings

of 9th Annual Security Conference, April 7-8, 2010, Los

Vegas, NV.

[16] Walton, G., T. Longstaff, and R. Linger, Technology

Foundations for Computational Evaluation of Security

Attributes, Technical Report CMU/SEI-2006-TR-021,

Software Engineering Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA, 2006.

http://www.cert.org/archive/pdf/FXplorerHICSS.pdf
http://www.cert.org/archive/pdf/FXplorerHICSS.pdf
http://www.cert.org/archive/pdf/FXplorerHICSS.pdf

