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Abstract 

Current methods of malware analysis are increasingly 

challenged by the scope and sophistication of attacks.  

Recent advances in software behavior computation 

illuminate an opportunity to compute the behavior of 

malware at machine speeds, to aid in understanding 

intruder methods and developing countermeasures. 

The behavior computation process helps eliminate 

certain forms of malware obfuscation and computes 

the net effects of the remaining functional code. This 

paper describes behavior computation technology and 

provides an example of its use in malware analysis.   

 

 

1.  A malware vulnerability 

 
Malware often exhibits a fundamental vulnerability 

that can be exploited by defenders. No matter how a 

malware package is obfuscated, and no matter what 

attack strategy it implements, it must ultimately ex-

ecute on a target machine to achieve its objectives. 

That is, the intended behavior of a malware package 

must be realized through ordinary execution of instruc-

tions and manipulation of memory, just as must the 

intended behavior of legitimate software. A potential 

Achilles heel of malware is literally its functional be-

havior which must achieve a purpose intended by the 

attacker. This paper describes application of software 

behavior computation to help eliminate certain forms 

of obfuscation in malware and derive the net behavior 

of the remaining functional code.  

This malware vulnerability is being exploited 

through research and development carried out by the 

CERT organization of the Software Engineering Insti-

tute at Carnegie Mellon University. The result is an 

emerging technology named Function Extraction (FX). 

The objective of behavior computation is to produce 

the net functional effect of the sequential logic of a 

program in all circumstances of use with mathematical 

precision to the maximum  extent possible. This 

process is subject to theoretical limitations, for exam-

ple in loop behavior computation. Research has shown 

how to reduce the effects of these limitations for prac-

tical application. Function Extraction has been success-

fully employed in malware analysis [12,13].   

A specialization of FX technology is being devel-

oped in the FX/MC (Function Extraction for Malicious 

Code) system. Intruders often obfuscate malware 

packages with complex control flow (spaghetti logic) 

and blocks of no-op code (code with no functional 

effect), in an effort to make analysis difficult or im-

possible. The FX/MC system eliminates obfuscation 

caused by spaghetti logic and no-op blocks, and com-

putes the net behavior of the remaining functional 

code.   

 

2.  Foundations of behavior computation 
 

Software behavior computation is enabled by the 

Structure Theorem and the Correctness Theorem. 

The Structure Theorem guarantees the sufficiency 

of single-entry-single-exit sequence, alternation, and 

iteration control structures to represent any sequential 

program. The constructive proof of the Theorem de-

fines an algorithm for transforming arbitrary control 

flow containing jumps into function-equivalent form  

expressed as an algebraic structure of nested and se-

quenced control structures. This structure is a neces-

sary precondition for behavior computation. Applica-

tion of the Structure Theorem eliminates arbitrary 

branching logic as is found in control flow obfuscation 

of malware packages. The proof of the theorem is giv-

en in [8]. 

The Correctness Theorem defines the transforma-

tion of procedural control structures, including se-

quence, ifthenelse, and whiledo, into procedure-free 

functional forms. The functional forms represent the 

behavior signatures of the control structures. They can 

be obtained through function composition and case 



  

 

analysis as described below (for control structure la-

beled P, operations on data labeled g and h, predicate 

labeled p, and program function labeled f). These func-

tion equations are independent of language syntax and 

program subject matter, and define the mathematical 

starting point for behavior calculation. 

The behavior signature of a sequence control struc-

ture 

P: g; h 

can be given by 

f = [P] = [g; h] = [h] o [g] 

where the square brackets denote the behavior signa-

ture of the enclosed program and “o” denotes the com-

position operator. That is, the program function of a 

sequence can be calculated by ordinary function com-

position of its constituent parts.   

The behavior signature of an alternation control 

structure 

P: if p then g else h endif 

can be given by 

f = [P] = [if p then g else h endif] 

  = ([p] = true  [g] | [p] = false  [h]) 

where | is the “or” symbol. That is, the program func-

tion of an alternation is given by a case analysis of the 

true and false branches.  

The behavior signature of an iteration control struc-

ture  

P: while p do g enddo 

can be expressed using function composition and case 

analysis in a recursive equation based on the equiva-

lence of an iteration control structure and an iteration-

free control structure (an ifthen structure): 

f = [P] = [while p do g enddo] 

  = [if p then g; while p do g enddo endif] 

  = [if p then g; f endif] 

This recursive functional form must undergo additional 

transformations to arrive at a representation of loop 

behavior that is readily understandable. The roots of 

the Correctness Theorem are found in the mathematics 

of denotational semantics [1,8,9,11,14].  Proofs of the 

Correctness Theorem and a related Iteration-Recursion 

Lemma are given in [8]. 

The functional behavior defined by the Correctness 

Theorem is identical to that of the control structure 

from which it is computed, that is, the computed beha-

vior and corresponding control structure are function-

equivalent mappings of inputs into outputs. Thus, 

computed behaviors can be freely substituted for cor-

responding control structures. Such substitution de-

fines a stepwise process of behavior computation, whe-

reby the algebraic control structure hierarchies pro-

duced by the Structure Theorem are traversed from 

bottom to top. At each step, net effects of control struc-

tures are composed and propagated while procedural 

details are left behind.  Behavior computation involves 

mathematics beyond the Structure and Correctness 

Theorems, but it would be impossible without them.  

 

3.  The FX/MC system 
 

Substantial research in mathematical foundations 

and algorithm design for behavior computation has 

been  required to develop the technology to its present 

state. To see how the FX/MC system works, consider 

the architecture diagram of Figure 1.  FX/MC operates 

on malware coded in or compiled into Intel assembly 

language. The algorithmic process of behavior compu-

tation requires four principal steps as follows. 

Step 1: Transform instructions to functional seman-

tics. Behavior computation operates at the level of 

functional semantics of programs, not syntactic repre-

sentations. Each instruction in an input program is 

transformed into a functional form that defines the net 

effect of the instruction on the state of the system. For 

example, an add instruction operating on registers not 

only produces a sum, but also changes the values of 

certain flag registers on the processor. The instruction 

transformation is driven by a pre-defined repository of 

instruction semantics as shown in the figure.  There are 

over 1100 op codes on the processor. Build-out of this 

repository is an ongoing task.   

Step 2: Transform program to structured form. The 

true control flow of the input program, including any 

computed jumps and branching logic, is determined by 

deterministic reachability analysis in a frontier propa-

gation algorithm. The program is then transformed into 

structured form, guided by the constructive proof of 

the Structure Theorem. This step expresses the pro-

gram in an algebraic structure of single-entry, single- 

exit control structures including sequence, ifthenelse, 

and whiledo.  Control flow obfuscation caused by arbi-

trary jumps in the code, often inserted by intruders 

using commonly available tools, is eliminated by the 

structuring process. 

Step 3: Compute program behavior. Behavior 

computation can now be carried out, guided by the 

Correctness Theorem that defines transformations from 

procedural structures to non-procedural behavior ex-

pressions. A significant amount of mathematical 

processing is required for this step. Research has 

shown how to accommodate theoretical limitations on 

loop behavior computation. 



  

 

Step 4: Reduce behavior to final form. The compu-

tations of step 3 account for all behavior, even taking 

machine precision into account. This initial behavior 

must now be reduced to final form.  In analogy, recall 

high school algebra and the need to reduce expressions 

such as 3x
3
 + 2x

2
 –x

3
 + 4x

2
 to 2x

3
 + 6x

2
. This process 

is driven by a repository of Semantic Reduction Theo-

rems (SRTs) as shown in the figure. These micro-

theorems encapsulate information required to reduce 

terms in computed behavior to simpler form. The theo-

rems are very general and widely applicable. For ex-

ample, the library of SRTs for finite arithmetic pro-

vides reductions for arithmetic expressions will not 

require modification unless the processor architecture 

is modified.  Build-out of this repository is an on-going 

task. In addition, computed behavior can exhibit struc-

tural relationships useful for organization and presenta-

tion. For example, behavior expressions often contain 

repeated substructures that can be factored and ab-

stracted.   

 

 

Figure 1: FX/MC system architecture 

 

4.  Properties of behavior computation 
 

Consider the miniature illustration of behavior cal-

culation in Figure 2.  The three-line program in the 

upper left is expressed in design language form, and 

operates on small integers x and y (“:=” is the assign-

ment operator).  It is not immediately obvious what the 

program is doing, but its effect can be calculated with 

the trace table shown in the Figure.  The table contains 

a row for each assignment and a column for each vari-

able assigned.  Each row shows the effect of its as-

signment on variables x and y (in the first row, “0” 

signifies “old value,” 1 signifies “new value, and simi-

lar for the other rows).  The derivations apply alge-

braic substitutions and reductions in a function compo-

sition process to arrive at output values for the pro-

gram expressed in terms of input values, with interme-

diate operations abstracted out.  This computation re-

veals that the program is a swap that exchanges the 

initial values of x and y.  

The behavior is expressed in terms of a conditional 

concurrent assignment (CCA).  The condition is true 

(the sequence is always executed since it contains no 

branching logic), and the assignments to final x and y 

are carried out concurrently, that is, all expressions on 

the right of the assignment operators are assigned to all 

targets on the left at the same time. This CCA structure 

is the only statement form required in the FX/MC be-

havior expression language. It is an important structure 

for understanding the examples that follow.   

Suppose the program of Figure 2 contained an er-

ror, say, for example, that the addition in the first as-

signment had been mistakenly coded as a subtract op-

eration. The trace table and derivations would reveal 



  

 

the computed behavior as the following concurrent 

assignment, and the error is apparent: 

true  

 x := y 

 y := x – 2y    

This miniature example can be used to point out 

two important properties.  The first is the “computing, 

not searching” property. Behavior computation does 

not search for things in code at the syntactic level, as is 

the case with many methods of analysis. Rather, it ap-

plies the semantics of instructions and the mathematics 

of function composition to compute net effects of pro-

grams. Thus, both the correct and error results of the 

computation above are produced by the same algo-

rithm, with no special cases of analysis required. The 

computation simply “follows it nose” to produce what-

ever behavior is present, whether intended, unintended, 

or malicious.    

The second is the “many implementations, one be-

havior” property. There are many possible ways to 

implement a given specification.  For example, the 

swap could be implemented with  a temporary varia-

ble, t, 

 

t := x 

x := y 

y := t 

or with “exclusive or” instructions: 

x := x  xor  y 

y := x  xor  y 

 x := x  xor  y 

Each of these implementations would result in the 

same computed behavior on x and y, namely, a swap of 

their initial values. When behavior is computed, specif-

ics of procedural implementations are replaced by net 

behavior that can represent a variety of algorithmic 

strategies. This property will prove useful in identify-

ing and analyzing malware families.  

Of course, orders of magnitude more mathematical 

processing are carried out by the FX/MC system in 

computing behavior for real programs. This simple 

example nevertheless depicts generation of behavior 

knowledge through function composition and illu-

strates key properties of the process. The next section 

provides a more substantial example.  

 

 

 

Figure 2: A miniature example of behavior computation  
 

5.  An example of malware obfuscation 

removal and behavior computation  
 

Figure 3 depicts the first two screenshots from IDA 

Pro of a nine-part display of a malware program con-

taining about 340 lines of Intel assembly language. 

Only the first two screenshots are shown to save space. 

The others exhibit similar complexity. The malware 

has been intentionally obfuscated by a tool that added 

complex, spaghetti-logic control flow as shown by the 

many red arrows on the left (the IDA Pro displays do 



  

 

not show all of this obfuscation). In addition, no-op 

blocks of code that have no functional effect have been 

inserted, all of which makes analysis very difficult. 

However, as observed earlier, any obfuscation by an 

intruder must not perturb the intended functional effect 

of the malware, or risk defeating its purpose. The 

FX/MC system is designed to eliminate such obfusca-

tion and compute the behavior of the remaining func-

tional code of the malware.  

 

 
 

Figure 3. First two screenshots of an  

obfuscated malware program 

Figure 4 depicts the input malware program of Fig-

ure 3 after transformation to structured form and elimi-

nation of control flow obfuscation. To save space, only 

the first two parts of a four-part display are shown. The 

others simply continue the sequential logic. The con-

structive proof of the Structure Theorem and other 

mathematics was employed to create a function-

equivalent version of the program expressed in an al-

gebraic structure of nested control structures.    

 

 
 

Figure 3 continued. 



  

 

In this case, the structuring transformation reveals 

that, despite the addition of so much control flow ob-

fuscation by the intruder, the program is in reality a 

simple sequence structure with no branching or loop-

ing logic present. Jump statements are left in the pro-

gram for traceability, but have no effect on control 

flow and can be regarded as comments. The program is 

smaller with control flow obfuscation removed.  The 

elimination of arbitrary control flow jumps seen here is 

an intrinsic property of the structuring mathematics 

that works no matter what particular configuration of 

spaghetti logic may be present. No special cases or 

heuristics are employed in this process. 

 

 
 

Figure 4. Start of the program after structuring 

and eliminating control flow obfuscation  

The simple control flow of this structured version 

of the malware, produced in seconds at machine 

speeds, can now be read and understood by analysts, a 

virtually impossible task for the initial spaghetti-logic 

version of Figure 3. The structuring process helps re-

duce the effectiveness of this type of control flow ob-

fuscation as a weapon for intruders.  

While the logic of the malware program is now 

understandable, it still contains embedded no-op 

blocks of code (code with no functional effect) that can 

complicate the analysis process and must be eliminat-

ed. The next step is to compute the behavior of the 

structured program of Figure 4.   

 

 
 

Figure 4 continued. 



  

 

Behavior computation, which ultimately produces the 

net functional effect of the program, traverses the 

control structures in a stepwise process of function 

composition. If an intermediate composition produces 

a state seen previously, the intervening code is a no-

op block and can be eliminated. This process results 

in the display of Figure 5.    

 

 
mov AH, 78 
lea DX, [1044] 
int 33 
mov AH, 60 
mov DX, 0x009E 
int 33 
mov BH, 22 
add BH, 42 
xchg bx, ax 
lea DX, [8] 
mov CX, 0x0410 
int 33 
(ret) 
label = exit 

 
 

Figure 5.  Malware program with  

embedded no-op blocks eliminated  
 

With no-op blocks removed, the 340-line malware 

program reduces to just 14 lines of code, a better than 

20:1 reduction. It turns out that nearly all of the code 

of Figure 4 had no functional effect at all, and was 

present solely to make analysis more difficult. Com-

pare these 14 lines of functional code to Figure 3 

which depicts the original obfuscated version of the 

program. The reduction in size and complexity of 

malware illustrated here can be easily expressed in 

metrics that provide objective measures of system 

performance. 

In determining the purely functional instructions 

in the malware program, the FX/MC system computes 

their net behavior. The results of the computation are 

depicted in Figure 6. It turns out that this small mal-

ware program exhibits four possible cases of beha-

vior, three of which result from programming errors 

that produce nothing more than incidental effects. 

The first of these is shown in the Figure, the others 

are similar. The fourth case in the figure, however, 

reveals the full malicious capabilities of the malware. 

The cases of behavior in Figure 6 each represent a 

conditional concurrent assignment (CCA). If the con-

dition on a case is true, that case defines the behavior 

that the program will produce. The cases are disjoint, 

so only one case of behavior will occur on a given 

execution of the program.  

As shown, the concurrent assignments can involve 

updates to registers, memory, the file system, and 

flags. All of the assignments in these categories occur 

at once, essentially a vector assignment from right-

hand to left-hand sides of the “:=” assignment opera-

tor. The cases represent an as-built specification of 

the malware program.   

Consider the behavior defined by Case 1. The 

condition contains two predicates highlighted in ital-

ics, namely, create_file_failed and write_file_failed, 

both of which take arguments involving file names 

and attributes. It is clear that the malware is attempt-

ing to create a file and write it. However, because a 

case of behavior only occurs if its condition is true, 

this case will only occur if both the create and the 

write have failed. As a result, the behavior produced 

by this failure case involves only incidental effects 

that are not shown in the Figure. Case 1 represents a 

programming error, a mistake in the malware that 

produces no malicious effect at all. 

Cases 2 and 3, not shown, exhibit similar out-

comes. In these cases either the create or the write 

fails, and the result is similar: incidental behavior is 

produced for registers, memory, and flags, an empty 

file is created in case 2, and bytes are written to an 

unintended file in Case 3.  In either case, the malware 

again fails to achieve the desired effect. These are 

error cases as well, revealing more coding mistakes.  

In Case 4 both the create_file_succeeded and 

write_file_succeeded predicates are true. The File 

System is updated with a file starting at byte 0 and of 

size 39 bytes (shown in italics). This represents the 

location of the malware itself, which is exactly 39 

bytes long. The computed behavior reveals that mal-

ware carries out a self-replication by writing itself 

into the File System of the host machine. 

 
6.  Future research  

 

A need exists to provide better tools for malware 

analysis. The functional semantics of malware is a 

resource available for this task. Automated behavior 

computation taps this resource in a new approach to 

the problem. FX can provide analysts with knowledge 

of malware structure and behavior that is not current-

ly available and can be used  in a variety of ways: 

 Understand the function of malware. 

 Gain insight into how malware spreads. 

 Reveal vulnerabilities and attack strategies. 

 Evaluate intruder skill levels. 

 Compare malware based on computed behavior. 

 Develop defenses and countermeasures.  



  

 

Beyond malware analysis, FX technology can be 

applied to other areas, including software develop-

ment and verification [3,7], embedded system valida-

tion [2], software testing [5,6], analysis of security 

attributes [15,16], and malware detection [10]. Con-

trolled experiments have shown significant improve-

ments in programmer productivity and program quali-

ty for small programs when computed behavior is 

available [4]. As the build-out of FX technology con-

tinues and experience with behavior computation 

accumulates, additional research opportunities and 

application areas will emerge.   
 

 

CASE 1 (first of three cases resulting from programming errors, the other two are not shown) 

       Condition: 

create_file_failed( 
file_name_addr = 158, 
file_attribute = (word at (40 + (dword at (4 + ESP))))) 

and  
write_file_failed( 
 file_handle = create_file_error_code( 
             file_name_addr = 158, 
             file_attribute = (word at (40 + (dword at (4 + ESP))))), 
buffer_to_write = 0, 
num_bytes_to_write = 39)       

   

       Registers, Memory, File System, Flags: (Incidental behavior not shown)   

 

 

CASE 4 (successful self-replication case) 

Condition: 

create_file_succeeded( 
file_name_addr = 158, 

file_attribute = (word at (40 + (dword at (4 + ESP))))) 
and  
write_file_succeeded( 
 file_handle = get_new_file_handle( 
             file_name_addr = 158, 
             file_attribute = (word at (40 + (dword at (4 + ESP))))), 
buffer_to_write = 0, 
num_bytes_to_write=39)  

Registers, Memory, Flags:  

(Incidental behavior not shown)     

File System: 

FILES :=  
 
create_file_and_truncate( 

file_name_addr = 158,  
file_attribute = (word at (40 + (dword at (4 + ESP))))) 

and 
write_file( 

file_handle = get_new_file_handle( 
file_name_addr= 158,  
file_attribute = (word at (40 + (dword at (4 + ESP))))),  

buffer_to_write = 0,  
num_bytes_to_write = 39) 

 

Figure 6. Computed malware behavior  



  

 

A key objective for future research is comparison of 

behavior computation with other methods for malware 

analysis in controlled experiments. Research is currently 

underway to evaluate computed behavior as a means to 

augment or replace certain forms of software testing for 

embedded systems. Another area of future research is  

application of computed behavior to functional under-

standing and documentation of legacy software. 
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